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Abstract—Agricultural robots are called to help in many
tasks in emerging clean and sustainable agriculture. These
complex electro-mechanical systems can actually integrate ar-
tificial intelligence (AI), the Internet of Things (IoT), sensors,
actuators, and advanced control methods to accomplish functions
in autonomous or in collaborative ways. Before the deployment
of such techniques in the field, it is convenient to carry out
laboratory validations. These last could be at the sub-system, e.g.,
sensors or servos operation, or the whole system level. This paper
proposes the development of the hardware and software parts of
a platform of agricultural robot. The proposed system, highly
motivated by the restrictions imposed by COVID-19 context,
enables laboratory tests virtualization while keeping real-time
functionalities

Index Terms—Robotics, Virtual laboratory, Real-time systems,
Modeling

I. INTRODUCTION

The main challenge of the agricultural industry is to meet
the food demand of a growing population without increasing
or while reducing the environmental footprint of its activities.
Agriculture needs a transformation to deliver sufficient food
and nutrition to humanity. On the one hand, improving pro-
duction efficiency is necessary to meet this demand increase,
which is evaluated to be doubled by 2050. On the other
hand, the transformation of this vital industry also needs the
modernization of distribution and access; the reduction of
greenhouse gas emissions from land use and farming; the mit-
igation of losses in biodiversity and habitats; the minimization
of unsustainable water withdrawals; and the elimination of
water pollution from agricultural chemicals. [1].

Different points of view can be employed to analyze the
sustainability of farming depending on the stakeholder behind
the study; however, in most cases, about 74% of studies,
the social, economic and environmental priorities appear as
the main points to be considered [2]. To cover these three
aspects, the robotics technology comes to fill some gaps,
e.g., it can be envisaged to increase safety and improve work
conditions, to enhance productivity, and to reduce the use of
chemical products. The agricultural robots can support farmers
to accomplish different tasks which can be grouped in four
main groups: guidance, detection, action and mapping [3].
These important task groups are at the origin of many research
works looking for enhanced precision, low complexity, and

high energy efficiency [4]. Thus, the new era of agricultural
robots covers applications like water and nutrition monitor-
ing and control, diseases and bug monitoring and remedies,
soil monitoring and preparation, crop health monitoring and
intervention, machinery for nursery production, pesticide and
herbicide application, harvesting, and environment monitoring
and control for photosynthesis optimization [4], [5].
In the last years, We evidenced a considerable increase in
the use of the Internet of Things (IoT) and artificial in-
telligence (AI) technologies covering smart factories, smart
grids and smart farming [5], [6]. This technological revo-
lution comes with more powerful digital processors: micro-
controllers, multi-core computers, Field Programmable Gate
Arrays (FPGAs) and Graphics Processing Unit (GPU) which
enable the deployment of artificial intelligence (AI) methods,
edge computing and IoT. AI methods in robotics applications
can be employed in many tasks, e.g., to improve the quality
of detection, classification or recognition of diseases [7], or
to optimize the growing and biomass production process of
plants [4]. This promising scenario of smart farming supported
by artificial intelligence and robotics not only in controlled
environments of greenhouses but also in open-field motivates
the research to push beyond the limits of precision and high
efficiency agriculture [8], [9].
Hardware in the loop real-time emulation, co-simulation and
test beds platforms are necessary to validate hardware parts,
e.g., converters and actuators, and control algorithms before
their deployment in real field scenarios [10], [11]. These
platforms with virtual and physic elements enable the tests
of the system under controlled scenarios covering normal
and extreme situations permitting the tuning and refining of
control algorithms. We propose in this paper the develop-
ment of hardware and software components of a platform
of agricultural robot. The proposed system, highly motivated
by the constraints of the COVID-19 context and developed
during the pandemic, enables the laboratory tests virtualization
while keeping real-time functionalities. The remainder of this
paper is organized as follows, section II presents a general
description of the proposed system; section III and IV describe
respectively the communication & control framework and the
modeling of the agricultural robot; sections V and VI provide
respectively preliminary results and concluding remarks.



II. GENERAL DESCRIPTION OF THE AGRICULTURAL
ROBOT PLATFORM

A. Context and Motivation

As mentioned in the introduction, the modernization of the
agricultural sector includes intelligent machines and systems
looking for smart farming processes. This paper aims to
propose an agricultural robot platform to validate in labora-
tory the base functions of navigation, detection, action, and
mapping. The platform must be useful for open-field farming
applications and validate AI methods and IoT features in the
precision and high-efficiency farming scenario.

B. Proposed platform

The proposed platform is intended to support the functions
described hereafter which can be seen as sub-systems of the
whole agricultural robot platform.
Vision and Image Recognition: To be able to perform a pre-
cise action on a type of plant, the robot must be able to identify
it. In addition, plant identification must be made quickly since
the robot moves through the plantations and be reliable since
the action depends on the type of plant. We propose, by this
sub-system, an artificial intelligence-based image recognition
mainly supported by machine learning. More specifically, we
employ the open-source DIGITS tool designed by NVIDIA.
DIGITS is based on the DetectNet neural network, which
is itself based on GoogleNet. This tool permits to perform
object detection giving presence confirmation and location in
the treated image. The open-source software LabelImg made
it possible to identify the images’ objects while exporting
them in KITTI format. A NVIDIA Jetson AGX Xavier [12],
which is equipped with 512-core Volta GPU with Tensor Cores
and 8-core ARM v8.2 64-bit CPU, is employed as the main
processor unit of the robot platform. It is charged of image
recognition process and acts as server for the integration of
other components.
Soil Parameters Measurement: This sub-system permits to
obtain the information of most important characteristics of
soil by using two different types of sensors. The first sensor,
JXBS with RS485 interface, provides the information of
PH (acidity), NPK (Nitrogen, Phosphorus and Potassium),
electric conductivity, temperature, and humidity; the second,
SHT10 using I2C interface, provides in a complementary way
the information of temperature, and humidity. Table I lists
the measured parameters and the characteristics for standard
agricultural soils.
Four-wheel-drive (4WD) Locomotion: This sub-system en-
ables the navigation of the agricultural robot with indepen-
dently controlled direction and velocity of each wheel. Each
angle position is controlled by means of ANNIMOS 60kgf-
cm servomotors and each velocity by means of 60RPM HD
premium planetary gear DC motors with magnetic encoders.
For each wheel, Roboclaw 2x30A is employed as power
electronics drive for the DC motors (and servos) by means
of the PWM generated from a Nucleo-144 (STM32L496ZG-
P) which is connected via serial link to the main processor

(NVIDIA Jetson AGX Xavier).
Structure Reconfiguration: Complementary to the previous
sub-system, this one enables the in-field and automated re-
configuration of the width and height of the robot to adapt
to different crops. A set of linear actuators is arranged so
that when the ranks in the field dictate, the robot decreases
or increases its width. In addition, depending on the height of
the plants according to their type and maturity stage, the robot
can change its ground clearance.
Power monitoring: Considering the huge importance of energy
efficient operation of farming robots with limited energy
storage capacity, and the study of the impact of operation
modes over the lifetime and health of batteries; this sub-system
permits the monitoring in real-time of power and energy use.
The sub-system permits the reading and storage of the voltage,
current, and temperature profiles of the battery used as em-
bedded source during the process of charging or discharging.

TABLE I
MEASURED SOIL PARAMETERS

Parameter Standard Agricultural Soils ∗

PH (Acidity) 6.0− 7.4
Electric Conductivity 100− 1400µS/cm
Nitrogen 13.4− 40 ppm
Phosphorus 15− 100 ppm
Potassium 41− 160 ppm
Humidity > 70%
Temperature 18.5− 24◦C
∗Specific characteristics are defined for each type of crop,
e.g., typical NPK for corn fields are 23, 16 and 107ppm.
from: http://www.gocorn.net/, http://www.omafra.gov.on.ca

Fig. 1 shows a simplified block diagram of the proposed
agricultural robot platform. We can distinguish three (3)
main groups of elements or parts, the first which correspond
to the mobile and configurable platform itself, the second
which is associated to the in-field installed measurement
systems, in our case the measurement of humidity and
temperature at specific locations in the field, and the third
which correspond to the remote programming, testing and
virtual laboratory. It is important to highlight that the first
part can work as an autonomous system as it is intended
to go outside the laboratory. The second part can be used
independently as an IoT measurement system, e.g., the data
can be sent to a cloud platform like ThingSpeak of Mathworks
(https://www.mathworks.com/products/thingspeak.htm). The
third part can also be used independently to perform
completely virtual tests of controllers targeting the model
of the robot or including some parts of the hardware (field
measurements or mobile platform).

III. COMMUNICATION AND CONTROL FRAMEWORK

A. Robot Operating System (ROS)

When building a robot system, a complex part is the control
and communication of each subsystem. ROS is an open-source
and flexible framework that offers a collection of tools to
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Fig. 1. Simplified diagram of the proposed platform of agricultural robot.

solve this problem; it makes possible the generation of code
shared with researchers and developers, allowing the world
of robotics to advance rapidly and encourage collaborative
development [13]. In addition, being open-source, ROS has
a large community that continuously maintains and improves
the system. Numerous articles show that this framework is very
suitable for mobile robots equipped with cameras and multiple
sensors [14], [15]. One of the greatest qualities of ROS is its
modularity. As illustrated in Fig. 2, each node in the system
represents a subsystem of the robot which communicates in
peer to peer. Nodes do not know of the existence of other
subsystems, a “Master” program is used to register each node
in the network and its address, like a DNS server. This node
network configuration allows each subsystem to maintain its
independence, so if one part stops functioning, there is no
effect on other subsystems. The nodes use “topics” on which
they can publish information to be transmitted to all the other
nodes which have subscribed to the topic. The information
is published on the network and is available to any node
that wishes it. This allows scalability and openness of the
system. In our case this makes it possible, for example, to give
information to both the physical robot and its virtual model
which is presented in section IV.

B. Framework Implementation

ROS is based on a TCP / IP; all nodes must be on the
same network and communicate with each other. We opted
for a wireless LAN Wi-Fi network because our robot is
mobile and some sensors not being on the platform. Thus,
we used a Wi-Fi card on a Raspberry as a hot-spot. This
way, all the subsystems can connect to a common network,
independent of the environment. The IP address of the ROS
Master was fixed. Nodes do not need a fixed IP address since
they are registered to the ROS network by communicating
with the ROS master. Therefore, once the Master is set up,
subsystems can be added to the network easily. The framework
provides a library that allows serial communication between

Fig. 2. ROS conceptual diagram.

embedded devices, e.g., microcontrollers, and ROS. Therefore,
the library was used to link sub-systems in the platform that
can not be connected to the Wi-FI network. For the STM32
which controls the servo motors we do not have libraries, but
ROS offers a python API, so we just had to create a very
simple python program to make the UART-Node connection.
Likewise, we created a socket server using Python for wireless
devices to allow them to transmit their information within
the ROS network. A script is used to establish the socket
connection, to create the node, and to publish the data on
the ROS network. As illustrated in Fig. 3, this configuration
makes possible to create as many topics as available sensor
data, for example for the SHT10 sensor we have the “/
SHT10 / temperature” and “/ SHT10 / humidity” topics. This
allows a very clear organization of the information available
for the monitoring and control of the robot platform. ROS
provides a MATLAB API that we can use to create an HMI
interface for the robot monitoring and control. Thus, we have
implemented an application on MATLAB that creates a node
on the network, retrieves the sensor data by subscribing to ROS
Topics, and sends commands to control the robot by publishing



Fig. 3. ROS topics definition for the monitoring and control of the robot
platform.

in ROS topic. A view of the HMI is presented in Fig. 4.
Furthermore, a node that sends information from a camera lo-
cated in the laboratory was used to implement visual feedback
in the MATLAB HMI. This real-time feedback is particularly
useful for the remote operation of the platform in the context
of COVID-19 with limited access to laboratory facilities. This
interface provides full control of the robot so we can verify
that everything is going correctly. However, since ROS is
independent, it also means that the robot platform can work
even if the interface is not started.

IV. AGRICULTURAL ROBOT MODELING

This section explains the modeling of the agricultural robot
platform, including the reasons of the choice of the software
used for this purpose.

A. Fast Review of Modeling Approaches

In order to model the designed robot, different software
solutions have been considered to choose the one that
would best fit the needs of the project. Many robotic
simulators are indeed available: the following are the six
deemed to be the most fitted for this robot. They can all
be obtained for free and can easily be integrated to ROS.

1) MORSE: the Modular OpenRobots Simulation Engine
(MORSE) is a generic simulator for academic robotics. It
is modular (new actuators or sensors can be easily added)
and provides realistic 3D simulation scenes. However,
it does not have a graphical user interface and is only
controlled from the command-line, which makes it harder
to learn for beginners compared to most robotic simulators.

2) OpenRAVE: the Open Robotics Automation Virtual
Environment (OpenRAVE) is an environment mainly focused
on simulating motion planning algorithms for robotics. It has
one of the best calculating capacities of robotic simulators
However, the agricultural robot developed in this work is
quite out of its specialty. Moreover, these resources are not

especially needed to simulate a single robot without the
need for extreme precision (such as grasping movements).

3) Webots: Webots is one of the most used simulators
for agricultural applications. It provides a wide range
of sensors, has a user-friendly graphical interface and
has open-source APIs, which makes it easier to use a
precise programming language with specific libraries.

4) Gazebo: Gazebo is probably the simulator with
the best integration with ROS. It also has a great
flexibility, is able to perform accurate simulation and
is able to perform well even with complex scenes,
and it has a large community of active contributors.

5) CoppeliaSim: the last simulator is CoppeliaSim, pre-
viously named Virtual Robot Experimentation Platform (V-
REP). It has a user-friendly interface and an excellent inte-
gration with ROS. Also, it supports several APIs for different
programming languages such as C/C++, Python, Java, MAT-
LAB/Octave. It obtained good reviews from users [16] and
offers functionalities like the possibility to edit CAD models
inside the software. That is a strong point against Gazebo
which does not have this feature [17]. Therefore, this software
is suitable for the robotic system implemented in this paper
regarding all the advantages mentioned before.

B. Model Development using CoppeliaSim
The simple interfacing of CoppeliaSim with ROS makes

switching between the command of the real robot and the
tests on the model easy. As shown in Fig. 5, one can choose
between both just by modifying the ROS master called in the
MATLAB script that launch the graphical user interface. By
choosing the IP address of the NVIDIA Jetson the actual robot
will be controlled, and choosing the IP address of the ROS
master linked to CoppeliaSim will allow the model the be the
one to receive the commands and to send back the simulated
results like the values of the soil parameters. As it is not
possible, to our knowledge, to directly get soil parameters in
CoppeliaSim, these values have been calculated using simple
functions based on the position of the robot to allow the testing
of control algorithms in the future. These calculations are done
inside child scripts linked to the model in CoppeliaSim. These
child scripts are used to control the robot: they take care of the
ROS messages published on the command topic and control
the motors and other actuators consequently, and they publish
as well on the other topics the information defined to be sent
back to the user via the HMI (Fig. 4). The final model is shown
in Fig. 6. It has all the functionalities of the actual robot except
the sub-system of power monitoring, and it has been placed
into an environment close to reality (on an uneven bumpy floor
and with plants to see) so that the tests are as informative as
possible.

V. PRELIMINARY RESULTS

We have performed some laboratory tests and obtained
preliminary results from the proposed platform.



Fig. 4. HMI for the monitoring and control of the robot platform including real-time video feedback.

Fig. 5. Position of the model inside the project.

Fig. 6. Model of the agricultural robot platform under CoppeliaSim.

Vision and Image Recognition: We trained the system
to detect Ambrosia artemisiifolia L., Ragweed or “Herbe
à Poux” , in French, which is widespread and considered
responsibly of agricultural losses particularly in soybean fields
in southern Quebec; and that is also known as strong allergen
affecting population health in urban areas [18]. Preliminary
results using a training database containing 200 positive
samples covering different stages of maturity permitted us
to identify and locate it with a mean accuracy of 45%
while the best accuracy was 75%. Sometimes, the system
confused the target plant (Ragweed) with small ferns (e.g.,
Botrychium virginianum) also present in Quebec. However,

the latter is more abundant in wetlands and in forests and
less often in agricultural fields. An illustrative example of the
detection of Ragweed at mature stage is presented in Fig. 7.

Fig. 7. Example of inference for detection of Ambrosia artemisiifolia L. also
known as Herbe à Poux in Quebec.

Measurement of soil parameters: Fig. 8 presents a sample
of results for the measurement of PH and the concentration
of Nitrogen (N) Phosphorus (P), and Potassium (K) for
standard soil without specific fertilizing treatment. We
can notice that, except for the PH, the measurements are
zero before the sensor is plugged in the soil, and the
readings are stabilized after approximately three minutes.
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Fig. 8. Example of measurement of soil parameters using JXBS sensor.

Robot Operation Power Measurement: We performed
some laboratory tests to corroborate the operation
of each component of the platform. Also, the power



consumption of the platform is measured as shown in Fig. 9.
Four-wheel-drive (4WD) Speed Measurement: Fig. 10.
shows the speed measurements of the 4 wheels of the mobile
platform. These measurements can be used to implement
a strategy that can optimize the power consumption of the
robot by controlling the speed of each wheel.

Fig. 9. Example of power consumption measurement of the platform

Fig. 10. Speed of the platform wheels
These results confirmed us the correct operation of each

sub-system and the advantages of using the modular imple-
mentation supported on ROS.

VI. CONCLUSION AND FUTURE WORK

This paper proposes the development of an agricultural
robot platform; the proposed system is intended for research
and educational purposes and enables real-time monitoring
and the tests of control algorithms and artificial intelligence
methods. The system includes the hardware prototype and its
twin model developed using CoppeliaSim, which enables the
virtualization of some laboratory tests before the field tests
in agricultural farms. We employ ROS as the communication
and control framework, MATLAB and Python for high-level
programming, which brings us an open, scalable and modular
test bench for robotics and control.

Current and future works include implementing positioning
and navigation sub-systems and using the developed platform
to evaluate energy-efficient operation strategies for the robot
in agricultural fields. We also work on the improvement of the
Ragweed detection accuracy by retraining the system using a
larger dataset and expanding it to recognize other species.
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